The tide timetable below is calculated from Long Point, Lake Borgne, Louisiana but is also suitable for estimating tide times in the following locations:
- Rigolets (0km/0mi)
- Waveland (25.9km/16.2mi)
- Bay Saint Louis (30.2km/18.9mi)
Day | High | Low | High | Low | High | Phase | Sunrise | Sunset | Moonrise | Moonset |
---|---|---|---|---|---|---|---|---|---|---|
Fri 01 | 6:54 AM CDT 1.00 ft | 6:29 PM CDT 0.24 ft | First Quarter | 6:17 AM CDT | 7:51 PM CDT | 1:38 PM CDT | ||||
Sat 02 | 7:35 AM CDT 1.11 ft | 7:12 PM CDT 0.14 ft | 6:18 AM CDT | 7:50 PM CDT | 2:35 PM CDT | 12:16 AM CDT | ||||
Sun 03 | 8:23 AM CDT 1.20 ft | 7:59 PM CDT 0.07 ft | 6:18 AM CDT | 7:50 PM CDT | 3:33 PM CDT | 12:53 AM CDT | ||||
Mon 04 | 9:15 AM CDT 1.27 ft | 8:47 PM CDT 0.01 ft | 6:19 AM CDT | 7:49 PM CDT | 4:31 PM CDT | 1:36 AM CDT | ||||
Tue 05 | 10:08 AM CDT 1.33 ft | 9:34 PM CDT −0.03 ft | 6:19 AM CDT | 7:48 PM CDT | 5:26 PM CDT | 2:25 AM CDT | ||||
Wed 06 | 10:57 AM CDT 1.38 ft | 10:21 PM CDT −0.05 ft | 6:20 AM CDT | 7:47 PM CDT | 6:16 PM CDT | 3:21 AM CDT | ||||
Thu 07 | 11:44 AM CDT 1.41 ft | 11:04 PM CDT −0.04 ft | 6:21 AM CDT | 7:46 PM CDT | 7:01 PM CDT | 4:22 AM CDT | ||||
Fri 08 | 12:28 PM CDT 1.40 ft | 11:43 PM CDT 0.00 ft | 6:21 AM CDT | 7:45 PM CDT | 7:41 PM CDT | 5:26 AM CDT | ||||
Sat 09 | 1:11 PM CDT 1.34 ft | Full Moon | 6:22 AM CDT | 7:44 PM CDT | 8:17 PM CDT | 6:31 AM CDT | ||||
Sun 10 | 12:18 AM CDT 0.10 ft | 1:56 PM CDT 1.22 ft | 6:22 AM CDT | 7:44 PM CDT | 8:49 PM CDT | 7:36 AM CDT | ||||
Mon 11 | 12:42 AM CDT 0.26 ft | 2:45 PM CDT 1.04 ft | 6:23 AM CDT | 7:43 PM CDT | 9:20 PM CDT | 8:40 AM CDT | ||||
Tue 12 | 12:36 AM CDT 0.45 ft | 3:51 PM CDT 0.81 ft | 11:09 PM CDT 0.63 ft | 6:24 AM CDT | 7:42 PM CDT | 9:51 PM CDT | 9:44 AM CDT | |||
Wed 13 | 5:05 AM CDT 0.76 ft | 1:52 PM CDT 0.54 ft | 6:24 AM CDT | 7:41 PM CDT | 10:23 PM CDT | 10:49 AM CDT | ||||
Thu 14 | 5:00 AM CDT 0.99 ft | 4:21 PM CDT 0.31 ft | 6:25 AM CDT | 7:40 PM CDT | 10:59 PM CDT | 11:55 AM CDT | ||||
Fri 15 | 5:35 AM CDT 1.21 ft | 5:29 PM CDT 0.10 ft | 6:25 AM CDT | 7:39 PM CDT | 11:40 PM CDT | 1:04 PM CDT | ||||
Sat 16 | 6:26 AM CDT 1.39 ft | 6:31 PM CDT −0.05 ft | Last Quarter | 6:26 AM CDT | 7:38 PM CDT | 2:14 PM CDT | ||||
Sun 17 | 7:25 AM CDT 1.51 ft | 7:32 PM CDT −0.14 ft | 6:26 AM CDT | 7:37 PM CDT | 12:28 AM CDT | 3:23 PM CDT | ||||
Mon 18 | 8:30 AM CDT 1.57 ft | 8:32 PM CDT −0.16 ft | 6:27 AM CDT | 7:36 PM CDT | 1:24 AM CDT | 4:27 PM CDT | ||||
Tue 19 | 9:36 AM CDT 1.59 ft | 9:31 PM CDT −0.13 ft | 6:28 AM CDT | 7:35 PM CDT | 2:27 AM CDT | 5:24 PM CDT | ||||
Wed 20 | 10:40 AM CDT 1.56 ft | 10:27 PM CDT −0.06 ft | 6:28 AM CDT | 7:34 PM CDT | 3:34 AM CDT | 6:11 PM CDT | ||||
Thu 21 | 11:40 AM CDT 1.49 ft | 11:17 PM CDT 0.06 ft | 6:29 AM CDT | 7:33 PM CDT | 4:40 AM CDT | 6:51 PM CDT | ||||
Fri 22 | 12:35 PM CDT 1.38 ft | 11:58 PM CDT 0.21 ft | 6:29 AM CDT | 7:31 PM CDT | 5:45 AM CDT | 7:25 PM CDT | ||||
Sat 23 | 1:28 PM CDT 1.23 ft | New Moon | 6:30 AM CDT | 7:30 PM CDT | 6:47 AM CDT | 7:56 PM CDT | ||||
Sun 24 | 12:25 AM CDT 0.37 ft | 2:22 PM CDT 1.07 ft | 6:31 AM CDT | 7:29 PM CDT | 7:45 AM CDT | 8:23 PM CDT | ||||
Mon 25 | 12:13 AM CDT 0.54 ft | 3:26 PM CDT 0.90 ft | 11:01 PM CDT 0.68 ft | 6:31 AM CDT | 7:28 PM CDT | 8:42 AM CDT | 8:50 PM CDT | |||
Tue 26 | 3:18 AM CDT 0.74 ft | 10:12 AM CDT 0.60 ft | 5:26 PM CDT 0.75 ft | 8:42 PM CDT 0.74 ft | 6:32 AM CDT | 7:27 PM CDT | 9:37 AM CDT | 9:16 PM CDT | ||
Wed 27 | 3:31 AM CDT 0.89 ft | 12:54 PM CDT 0.52 ft | 6:32 AM CDT | 7:26 PM CDT | 10:32 AM CDT | 9:44 PM CDT | ||||
Thu 28 | 4:02 AM CDT 1.02 ft | 2:47 PM CDT 0.42 ft | 6:33 AM CDT | 7:25 PM CDT | 11:27 AM CDT | 10:15 PM CDT | ||||
Fri 29 | 4:42 AM CDT 1.13 ft | 4:06 PM CDT 0.33 ft | 6:33 AM CDT | 7:23 PM CDT | 12:24 PM CDT | 10:49 PM CDT | ||||
Sat 30 | 5:30 AM CDT 1.20 ft | 5:13 PM CDT 0.25 ft | 6:34 AM CDT | 7:22 PM CDT | 1:22 PM CDT | 11:29 PM CDT | ||||
Sun 31 | 6:27 AM CDT 1.26 ft | 6:15 PM CDT 0.20 ft | First Quarter | 6:34 AM CDT | 7:21 PM CDT | 2:19 PM CDT |
The tide timetable below is calculated from Long Point, Lake Borgne, Louisiana but is also suitable for estimating tide times in the following locations: