Lido Beach tide calendar

May 2025 Lido Beach Tides

DayHighLowHighLowHighPhaseSunriseSunsetMoonriseMoonset
Thu 015:51 AM EDT −0.18 ft11:42 AM EDT 4.25 ft5:56 PM EDT 0.25 ft5:52 AM EDT7:50 PM EDT8:39 AM EDT
Fri 0212:03 AM EDT 5.26 ft6:44 AM EDT 0.07 ft12:37 PM EDT 4.04 ft6:51 PM EDT 0.54 ft5:51 AM EDT7:51 PM EDT9:48 AM EDT12:56 AM EDT
Sat 0312:58 AM EDT 4.89 ft7:39 AM EDT 0.32 ft1:38 PM EDT 3.88 ft7:51 PM EDT 0.82 ft5:50 AM EDT7:52 PM EDT11:00 AM EDT1:42 AM EDT
Sun 041:57 AM EDT 4.55 ft8:38 AM EDT 0.50 ft2:43 PM EDT 3.82 ft8:55 PM EDT 1.00 ftFirst Quarter5:49 AM EDT7:53 PM EDT12:10 PM EDT2:17 AM EDT
Mon 052:58 AM EDT 4.28 ft9:34 AM EDT 0.59 ft3:43 PM EDT 3.90 ft9:56 PM EDT 1.05 ft5:47 AM EDT7:54 PM EDT1:16 PM EDT2:44 AM EDT
Tue 063:55 AM EDT 4.10 ft10:26 AM EDT 0.60 ft4:36 PM EDT 4.04 ft10:52 PM EDT 1.01 ft5:46 AM EDT7:55 PM EDT2:20 PM EDT3:08 AM EDT
Wed 074:46 AM EDT 3.97 ft11:13 AM EDT 0.59 ft5:25 PM EDT 4.22 ft11:45 PM EDT 0.91 ft5:45 AM EDT7:57 PM EDT3:21 PM EDT3:28 AM EDT
Thu 085:36 AM EDT 3.90 ft11:58 AM EDT 0.55 ft6:11 PM EDT 4.42 ft5:44 AM EDT7:58 PM EDT4:21 PM EDT3:47 AM EDT
Fri 0912:34 AM EDT 0.77 ft6:25 AM EDT 3.88 ft12:42 PM EDT 0.51 ft6:54 PM EDT 4.63 ft5:43 AM EDT7:59 PM EDT5:21 PM EDT4:06 AM EDT
Sat 101:20 AM EDT 0.61 ft7:10 AM EDT 3.91 ft1:23 PM EDT 0.48 ft7:33 PM EDT 4.82 ft5:42 AM EDT7:59 PM EDT6:22 PM EDT4:26 AM EDT
Sun 112:02 AM EDT 0.47 ft7:51 AM EDT 3.95 ft2:02 PM EDT 0.48 ft8:10 PM EDT 4.96 ft5:41 AM EDT8:00 PM EDT7:25 PM EDT4:48 AM EDT
Mon 122:43 AM EDT 0.38 ft8:29 AM EDT 3.97 ft2:41 PM EDT 0.52 ft8:45 PM EDT 5.04 ftFull Moon5:40 AM EDT8:01 PM EDT8:28 PM EDT5:13 AM EDT
Tue 133:25 AM EDT 0.35 ft9:07 AM EDT 3.95 ft3:20 PM EDT 0.60 ft9:22 PM EDT 5.06 ft5:39 AM EDT8:02 PM EDT9:31 PM EDT5:44 AM EDT
Wed 144:08 AM EDT 0.36 ft9:47 AM EDT 3.91 ft4:01 PM EDT 0.70 ft10:01 PM EDT 5.03 ft5:38 AM EDT8:03 PM EDT10:31 PM EDT6:22 AM EDT
Thu 154:53 AM EDT 0.40 ft10:29 AM EDT 3.85 ft4:44 PM EDT 0.80 ft10:43 PM EDT 4.96 ft5:37 AM EDT8:04 PM EDT11:26 PM EDT7:09 AM EDT
Fri 165:37 AM EDT 0.44 ft11:14 AM EDT 3.81 ft5:28 PM EDT 0.89 ft11:27 PM EDT 4.87 ft5:36 AM EDT8:05 PM EDT8:04 AM EDT
Sat 176:21 AM EDT 0.49 ft12:01 PM EDT 3.80 ft6:13 PM EDT 0.98 ft5:35 AM EDT8:06 PM EDT12:13 AM EDT9:07 AM EDT
Sun 1812:13 AM EDT 4.76 ft7:07 AM EDT 0.53 ft12:52 PM EDT 3.84 ft7:05 PM EDT 1.04 ft5:34 AM EDT8:07 PM EDT12:53 AM EDT10:14 AM EDT
Mon 191:03 AM EDT 4.63 ft7:57 AM EDT 0.53 ft1:49 PM EDT 3.97 ft8:09 PM EDT 1.05 ft5:33 AM EDT8:08 PM EDT1:25 AM EDT11:24 AM EDT
Tue 202:01 AM EDT 4.51 ft8:53 AM EDT 0.47 ft2:50 PM EDT 4.21 ft9:17 PM EDT 0.94 ftLast Quarter5:33 AM EDT8:09 PM EDT1:53 AM EDT12:35 PM EDT
Wed 213:03 AM EDT 4.44 ft9:46 AM EDT 0.34 ft3:48 PM EDT 4.54 ft10:18 PM EDT 0.72 ft5:32 AM EDT8:10 PM EDT2:18 AM EDT1:46 PM EDT
Thu 224:02 AM EDT 4.41 ft10:38 AM EDT 0.18 ft4:42 PM EDT 4.91 ft11:17 PM EDT 0.44 ft5:31 AM EDT8:11 PM EDT2:41 AM EDT2:59 PM EDT
Fri 235:00 AM EDT 4.41 ft11:29 AM EDT 0.04 ft5:37 PM EDT 5.26 ft5:30 AM EDT8:12 PM EDT3:05 AM EDT4:14 PM EDT
Sat 2412:14 AM EDT 0.15 ft5:59 AM EDT 4.42 ft12:22 PM EDT −0.09 ft6:33 PM EDT 5.57 ft5:30 AM EDT8:13 PM EDT3:30 AM EDT5:33 PM EDT
Sun 251:10 AM EDT −0.11 ft6:58 AM EDT 4.46 ft1:14 PM EDT −0.18 ft7:27 PM EDT 5.82 ft5:29 AM EDT8:13 PM EDT4:00 AM EDT6:54 PM EDT
Mon 262:02 AM EDT −0.30 ft7:53 AM EDT 4.50 ft2:04 PM EDT −0.21 ft8:17 PM EDT 5.94 ftNew Moon5:28 AM EDT8:14 PM EDT4:36 AM EDT8:17 PM EDT
Tue 272:54 AM EDT −0.38 ft8:45 AM EDT 4.50 ft2:55 PM EDT −0.15 ft9:07 PM EDT 5.91 ft5:28 AM EDT8:15 PM EDT5:22 AM EDT9:34 PM EDT
Wed 283:46 AM EDT −0.36 ft9:36 AM EDT 4.43 ft3:48 PM EDT −0.01 ft9:58 PM EDT 5.76 ft5:27 AM EDT8:16 PM EDT6:20 AM EDT10:40 PM EDT
Thu 294:39 AM EDT −0.27 ft10:30 AM EDT 4.32 ft4:43 PM EDT 0.17 ft10:50 PM EDT 5.51 ft5:27 AM EDT8:17 PM EDT7:27 AM EDT11:33 PM EDT
Fri 305:32 AM EDT −0.14 ft11:25 AM EDT 4.21 ft5:37 PM EDT 0.39 ft11:42 PM EDT 5.20 ft5:26 AM EDT8:17 PM EDT8:40 AM EDT
Sat 316:22 AM EDT 0.03 ft12:19 PM EDT 4.12 ft6:31 PM EDT 0.62 ft5:26 AM EDT8:18 PM EDT9:53 AM EDT12:14 AM EDT

The tide timetable below is calculated from Parsonnage Cove, Long Island, New York but is also suitable for estimating tide times in the following locations: